Relating diving behavior and antioxidant status: Insights from oxidative stress biomarkers in the blood of two distinct divers, *Mirounga leonina* and *Arctocephalus australis*

B.P.H. Righetti a,c,⁎, P.C. Simões-Lopes a, M.M. Uhart b, D. Wilhelm Filho c

a Laboratório de Mamíferos Aquáticos (LAMAq), ECZ-CCB. Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil

b Facultad de Ciencias Veterinarias, Universidad de la Provincia de Buenos Aires, Argentina

c Laboratório de Ecofisiologia Respiratória, ECZ-CCB. Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil

A R T I C L E I N F O

Article history:
Received 9 December 2013
Received in revised form 11 February 2014
Accepted 24 February 2014
Available online 5 March 2014

Keywords:
Antioxidants
Diving capacities
Marine mammals
Oxidative stress
ROS

A B S T R A C T

Pinnipeds rely upon diving to perform essential activities, including foraging. As pulmonated animals, oxygen privation experienced during submergegence represents a considerable challenge both physiologically and biochemically. Routine exposure to hypoxia and the rapid transitions between ischemia/reperfusion of tissues leads to extremely high reactive oxygen species (ROS) production, which must be opposed by antioxidant defenses to avoid oxidative stress. The diving behaviors and capabilities of pinnipeds are very diverse, resulting in distinct metabolic responses among species. To assess whether these characteristics reflect the antioxidant status of two marine diving mammals with distinct diving capacities, oxidative stress biomarkers were measured in the blood of *Arctocephalus australis* (n = 11) and *Mirounga leonina* (n = 12). All of the biomarkers analyzed in *M. leonina* were significantly higher than those of *A. australis*, suggesting that higher antioxidant content is needed to counteract the high ROS production associated with the long submergence times (24.3 ± 5.6 min) of this species, which are nearly ten times greater than those of *A. australis* (2.8 ± 0.5 min). Thus, the constitutive antioxidant defenses of both species are of distinct magnitudes due to their inherent diving capacity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Modern pinnipeds (Pinnipedia: Otariidae, Phocidae and Odobeniidae) represent over a quarter of all marine mammals worldwide (Berta and Sumichs, 1999). Unlike most marine mammals, pinnipeds exhibit “amphibious” behavior, as they are able to survive for long periods of time both in and out of water during resting periods and the reproductive season (Crocker and Costa, 2008). This group of animals displays some of the most remarkable diving capacities among diving mammals (Nowak, 1991; Berta and Sumichs, 1999).

For air breathing mammals such as pinnipeds, extreme diving represents a challenge. The lack of external oxygen sources beneath the water demands a variety of metabolic adaptations (Crocker and Costa, 2008) that allow some species, such as the elephant seals, to stay submerged for long time periods (Andrews et al., 1997). To decrease oxygen consumption and enhance their time underwater, pinnipeds reduce their heart rates during dives using a process known as bradycardia (Kooyman et al., 1981). Its intensity varies among species, in some cases reaching up to 80% of the normal or pre-dive heart rates (Andrews et al., 1997). While diving, pinnipeds also develop widespread vasodilation, which redirects blood flow and finite body oxygen stores to essential tissues and organs, such as the brain and heart, leaving the majority of body tissues in a hypoxic condition (Hochachka et al., 1977; Kooyman et al., 1981; Kanatous, 1999). Upon resurfacing, heart rate increases gradually, promptly restoring blood and oxygen flow to these tissues (Thompson and Fedak, 1993; Andrews et al., 1997) and restoring their metabolic functions and oxygen stores before the next dive.

Respiratory chain reactions and ATP production are also rapidly reestablished, leading to elevated reactive oxygen species (ROS) production (Cantó-Medellín et al., 2011). ROS are molecules produced physiologically and continuously at the mitochondrial cristae, mainly as byproducts of oxygen consumption (Boveris and Chance, 1973; Boveris, 1977; Halliwell and Gutteridge, 2007; Nelson and Cox, 2008).

Although these molecules participate in intracellular signaling, an increase in their concentration leads to free radical chain reactions that target and damage proteins (Stadtman and Levine, 2008), lipids (Rubbo et al., 1994), polysaccharides (Kaur and Halliwell, 1994) and DNA (Richter et al., 1988).

To quickly dispose of ROS and maintain their intracellular concentration at physiological levels, all aerobic cells possess a panoply of...
2. Material and methods

Blood samples were collected in the field through the cubital vein of juvenile *A. australis* (*n* = 11) and recently weaned (i.e., within 2 to 3 days of weaning) (*n* = 4), post-weaned (i.e., 15 and 30 days after weaning) (*n* = 3) and adult (*n* = 5) *M. leonina* in heparinized syringes. All *A. australis* were males, and samples were collected from April to November of 2011 at CRAM-FURG (Rio Grande, southern Brazil). Samples of *M. leonina* were obtained at Punta Delgada (Peninsula Valdes, Chubut, Argentina; 42°30′S; 64°30′W) from adult females and pups of both sexes. None of the animals sampled was molting and only *M. leonina* pups were fasting.

Samples were centrifuged (5000 *g* for 3 min) in the field to separate the plasma and erythrocytes, which were used to determine thiobarbituric acid-reactive substances (TBARS) and enzyme content, respectively, and immediately frozen. The aliquots of plasma and erythrocytes were sent to the Laboratório de Ecosiologia Respiratória/UFSC in Florianópolis/SC, Brazil, where they were stored in liquid nitrogen until analyses. For enzymatic assays, red cells were washed twice with cold saline solution; hemolysates were obtained by freezing/thawing using Na/K 20 mM buffer (pH 7.4), and supernatants were collected by centrifugation (5000 *g* for 10 min).

2.1. Enzymatic antioxidant assays

Enzymatic antioxidant assays were performed in duplicate according to previously described protocols: SOD (EC 1.15.1.1) activity was evaluated by measuring cytochrome c reduction (*Flohé and Otténg, 1984*); CAT (EC 1.11.1.6) activity was evaluated by measuring the decrease in a freshly prepared solution (10 mM) of hydrogen peroxide (240 nm) (*Aebi, 1984*); GPx (EC 1.11.1.9) activity was measured according to the method described by *Flohé and Günzler* (1984), using tert-butyl hydroperoxide as substrate; GR (EC 1.8.1.7) activity was assessed according to the method described by *Calberg and Mannervik* (1985), by measuring NADPH oxidation rate; and GST (EC 2.5.1.18) was determined according to the method described by *Habig et al.* (1974), using CDNB as substrate.

2.2. Lipid oxidation

Lipid oxidation was evaluated in the plasma by determining TBARS, according to the protocol described by *Ohkawa et al.* (1979), measuring the formation of stable compounds as a result of the reaction between lipid peroxides and thiobarbituric acid (TBA 0.73%). Briefly, trichloroacetic acid (TCA 12%) was added to plasma samples, followed by centrifugation (5000 *g* for 5 min). Supernatants were added to thiobarbituric acid, maintained in boiling water for 60 min, cooled and measured spectrophotometrically at 535 nm in triplicate.

2.3. Statistical analyses

The Shapiro–Wilks test was used for distribution fitting analysis. For normality accommodations, log or inverse transformations were performed whenever necessary.

To evaluate the influence of distinct species-specific diving profiles (i.e., reported mean submergence times), the mean values obtained for each marker (for both *M. leonina* and *A. australis*) were compared using independent *t*-tests (*p < 0.05*) (*Zar, 1974*) with Welch’s correction, not assuming similarity among variances. For a clearer observation of the similarity between individuals, cluster analysis was performed based on the standardized values of all of the biomarkers analyzed.

3. Results

All distributions were considered normal, with the following *p*-values: *A. australis*: CAT = *p* = 0.62; GPx = *p* = 0.91; SOD = *p* = 0.19; GST = *p* = 0.91; GR = *p* = 0.97; and TBARS = *p* = 0.46. *M. leonina*: CAT = *p* = 0.97; GPx = *p* = 0.75; SOD = *p* = 0.21; GST = *p* = 0.48; GR = *p* = 0.99; and TBARS = *p* = 0.67. Table 1 summarizes the *t*-test results for all the analyses, showing the mean and standard deviation values for both species, *t*-value, degrees of freedom (df), *p* and *p* value for variances. Despite the three groups sampled for *M. leonina*, only GR activity in recently weaned and GPx activity in post-weaned pups showed any significant difference from adult values, showing lower values for pups in both cases (*p* < 0.05). Therefore, biomarker values for the species were aggregated and compared predominantly under the scope of interspecies distinction.

Regarding that comparison, all of the antioxidant markers analyzed displayed significantly greater mean concentrations and/or activity values in *M. leonina* compared to *A. australis* (Figs. 1–6). SOC concentration varied dramatically among species (Fig. 1); the mean value for *M. leonina* (1240.26 ± 92.76 USOD·mL⁻¹) was nearly four times the value obtained for *A. australis* (301.56 ± 66.46 USOD·mL⁻¹) [t = 8.23; df = 19.23; *p* < 0.01]. Mean CAT activity values were over five times greater in *M. leonina* (68.14 ± 5.88 mmol·min⁻¹·mL⁻¹) compared to *A. australis* (13.02 ± 3.38 mmol·min⁻¹·mL⁻¹) [t = 8.13; df = 17.38; *p* < 0.01] (Fig. 2). The mean GPx value obtained for *M. leonina* (1.81 ± 0.16 mmol·min⁻¹·mL⁻¹) was more than three times the value observed for *A. australis* (0.55 ± 0.03 mmol·min⁻¹·mL⁻¹) [t = 7.89; df = 11.81; *p* < 0.01]. GR and GST activities showed a significant, yet smaller difference between species. The mean GR value for *M. leonina* (0.39 ± 0.08 mmol·min⁻¹·mL⁻¹) was higher than that of *A. australis* (0.20 ± 0.01 mmol·min⁻¹·mL⁻¹) [t = 2.30; df = 11.55; *p* < 0.05]. The standard deviation of *M. leonina* GR activity was high due to ontogenetic differences, which will be discussed later in this article. The mean GST value for *M. leonina* (21.78 ± 2.07 mmol·min⁻¹·mL⁻¹) was also greater than that of *A. australis* (12.11 ± 3.14 mmol·min⁻¹·mL⁻¹) [t = 2.59; df = 17.59; *p* < 0.05].

In *A. australis*, the mean GST activity also presented a high standard deviation, as the value obtained for one specimen (2601) was over four times the value obtained for the other *A. australis* sample. Finally, the TBARS concentration of *M. leonina* (60.77 ± 5.43 nmol·mL⁻¹) was lower than that of *A. australis* (120.06 ± 4.53 nmol·mL⁻¹).
four times greater than the mean value of *A. australis* (Fig. 6) (17.17 ± 2.20 nmol·mL\(^{-1}\)) \(t = 7.45;\) \(df = 13.21;\) \(p < 0.001\).

Based on the standardized measures for all biomarkers analyzed, the cluster obtained (Fig. 7) in a horizontal tree plot grouped individuals of *M. leonina* and *A. australis* by similarities in their antioxidant status.

4. Discussion

All mean enzymatic antioxidant activity levels and TBARS contents were significantly higher in the blood of *M. leonina* compared to *A. australis*.

SOD, CAT, and GPx (Figs. 1–3) presented the most contrasting values \((p < 0.001);\) thus, they were the main oxidative stress enzymatic biomarkers for use in interspecies comparisons.

As the first enzymatic antioxidant barrier of aerobic organisms, SOD is responsible for superoxide anion \((O_2^-)\) dismutation, which is continuously and physiologically generated from oxygen utilization within the mitochondria cristae. As a by-product of this reaction, hydrogen peroxide \((H_2O_2)\) is formed, and CAT and GPx function to convert ROS into oxygen and water (Halliwell and Gutteridge, 2007).

Whenever aerobic organisms must cope with high ROS production, SOD activity is increased, and due to the close interaction among these three antioxidant enzymes, CAT and GPx activities also increase to deal with high endogenous \(H_2O_2\) production and avoid the generation of further deleterious hydroxyl radicals \((HO^+)\), the strongest known oxidant, through Fenton–Haber–Weiss reactions (Halliwell and Gutteridge, 2007). As expected, we observed this relationship among these antioxidant enzymes in the present study.

GR \((p < 0.05)\) and GST \((p < 0.05)\) activities were significantly higher in *M. leonina*. GR showed a high standard deviation probably due to ontogenetic differences in its expression. In this regard, GR activity was the only marker that showed significant difference between age classes, reaching lower values in wean and post-wean pups (unpublished results). Accordingly, Vázquez-Medina et al. (2011) showed that reduced glutathione (GSH) biosynthesis increases in elephant seal pups after weaning.

Glutathione metabolism is continuously adjusted, balancing GSH synthesis, recycling from GSSG and utilization (Kidd, 1997; Griffith, 1999). Because GR recycles GSSG to GSH, we hypothesized that in weaning and recently weaned pups, an increase in GSH biosynthesis from cellular precursors would diminish the need for intensive GSSG recycling; thus, for high GR activity in fasting pups, yet still maintaining the necessary levels of cellular GSH.

Although ontogenetic developments play an important role in GR activity, *M. leonina* showed higher values for this enzyme, despite the fact that recently weaned individuals were included in this study. Therefore, we believe that the interspecies differences in this enzyme would be even more contrasting if only freely diving individuals were analyzed.

In *M. leonina* adults, M2a displayed GR activity approximately five times higher than that of the other specimens. This increase in the catalytic activity of GR may be related to greater GSH consumption in order to deal with higher levels of environmental pollutants (Machala et al., 1997; Elia et al., 2006; Kanerva et al., 2012) or to ontogenetic differences (Vázquez-Medina et al., 2011).

GST activity showed greater similarity between *A. australis* and *M. leonina*, possibly reflecting the primary role of this enzyme in xenobiotic detoxification (Jakoby, 2006). GST participates in phase II xenobiotic biotransformation reactions, catalyzing the conjugation of GSH with the oxidized products from phase I, enabling compound excretion (Vrzal et al., 2004).

Thus, we believe that the distinctions in GST activity found in the present study could be more closely related to environmental contamination and/or other conditions than to physiological and/or behavioral patterns. For instance, between the two individuals (2601 of *A. australis* and M2a of *M. leonina*) with high dispersion in the tree plot, specimen 2601 of *A. australis* presented abnormally high GST activity.
values, up to four times greater than the mean value obtained for the other samples of *A. australis*. Accordingly, previous studies indicated a significant increase in GST activity, especially for the CDNB induced isoenzyme, in the organs of various groups of animals exposed to high pollution rates (Lenártová et al., 1996; Machala et al., 1997; Canesi et al., 1999; Elia et al., 2006; Farombi et al., 2007).

We believe that this unusually high GST value might be an enzymatic response to environmental contamination that was specific to this individual, possibly in its colony of origin.

Despite the fact that all enzymatic antioxidants presented higher activities, TBARS values also increased in *M. leonina*. Accordingly, comparing to other diving mammals, *M. leonina* exhibited the highest lipoperoxidation level, which contrasts with its higher blood antioxidant capacity (Wilhelm Filho et al., 2000), reinforcing the concept that this species probably produces greater physiological ROS due to its enhanced diving capacity, even considering its high antioxidant status. Apparently, *M. leonina* possesses also a high tolerance to relatively high levels of lipoperoxidation as occurs in other vertebrates such as sharks and rays (Wilhelm Filho et al., 2000).

M. leonina dives for significantly longer times than *A. australis* (Riedman, 1990; Bennett et al., 2001; Hindell and Perrin, 2008; Trillmich et al., 1986). Greater submersion periods demand more intense physiological responses (Hindle et al., 2010) to optimize its finite oxygen stores in the absence of an outer source.

In general, phocids are excellent divers. Within this group, dives usually reach, and frequently exceed, the Aerobic Dive Limit (ADL) established for the species (Castellini et al., 1992; Thompson and Fedak, 2001) and are commonly followed by very short intervals in the surface (particularly for *M. leonina*) (Le Boeuf et al., 1988). Oxygen consumption in those dives is diminished, but because dives are frequently active (Kooyman and Campbell, 1972; Kooyman, 1985), body oxygen stores are usually depleted in each dive (Le Boeuf et al., 1988).

In contrast, short divers, such as *A. australis*, rarely reach the ADL possibly due to a direct benefit of "abandoning" unsuccessful forage strikes (Thompson and Fedak, 2001). The early termination of these dives, before the biological limitations are reached, have been shown to be accompanied by the maintenance of heart rates and organ function at their resting state (Kooyman and Campbell, 1972; Kooyman, 1985), reinforcing the fact that the shallow and below ADL dives *A. australis* perform only require mild metabolic responses.

A. australis and *M. leonina* antioxidant profiles were clearly distinguished in the tree plot cluster (Fig. 7), as shown by the two main groups formed by the analysis, indicating that both species developed antioxidant strategies with distinct magnitudes. It is well known that different diving amplitudes are reflected in distinct physiological responses. Individuals that remain underwater for extremely long periods...
of time tend to exhibit a more intense bradycardia than shallow/short divers, and they usually deplete their body oxygen stores. These stores tend to exhibit a more intense bradycardia than shallow/short divers, and they usually deplete their body oxygen stores. These stores tend to exhibit a more intense bradycardia than shallow/short divers.

This condition is most likely associated with their mean submergence time periods, displayed lower antioxidant enzymatic activities, likely due to the shorter/shallower dives. In contrast, M. leonina, which routinely dives for long periods well over its ADL limit, demanding intense metabolic/physiological responses, including higher ROS production upon resurfacing, displayed higher antioxidant capacity. Therefore, the constitutive antioxidant defenses of M. leonina and A. australis indicate that the blood antioxidant status is correlated with the diving capacities of each species.

Acknowledgments

We thank the staff at the rehabilitation facility of CRAM-FURG, Dr. Claudio Campagna and the staff at Centro Nacional Patagônico for the samples used in this study. DWF acknowledges CNpq for a research grant (proc. 300353/2012-0).

References

